The Weight of Nations

World Resources Institute, U.S.A.
Wuppertal Institute, Germany
University of Vienna, Department of Social Ecology, Austria
University of Leiden, Centre of Environmental Science, the Netherlands
National Institute for Environmental Studies, Japan

The Materials Cycle Pollution, Waste, and Environmental Disturbances Goods and Services Natural Resources Source: World Resources Institute

Non-Renewable Material Flows Tracked for this Study

Industrial Minerals

Asbestos

Bromine

Clay

Fluorspar (fluorine)

Gypsum

Nitrogen (ammonia)

Phosphate

Potqash

Salt

Chlorine

Caustic soda

Sand and Gravel, Industrial

Soda ash

Sulfur

Metals

Aluminum

Arsenic

Cadmium

Chromium

Copper

Gold

Iron metal (steel)

Iron and steel slag

Lead

Manganese

Mercury

Molybdenum

Nickel

Tin

Zinc

Fossil Fuels

Liquid

Natural gas

Solid

Coal combustion products

Non-Renewable Material Flows Tracked for this Study

Construction Materials

Crushed stone

Cement

Lime

Sand and gravel

Movements of Earth

From soil erosion

For highway construction

For general construction

From dredging operations

Nonrenewable Organic Material

Petroleum

Asphalt

Petrochemicals

Plastics and resins

Medical chemicals

Synthetic rubber

Petroleum coke

Renewable Material Flows Tracked for this Study

Agriculture	Forestry
-------------	----------

Animal biomass and manures

Crops biomass

Human wastes and manures

Natural rubber

Wood products

Paper and pulp products

The Materials Flow Cycle

Imports

Domestic Extraction

Exports

Domestic Wastes (to air, land, and water)

The Materials Flow Cycle

Foreign Hidden Flows

Imports

Domestic Hidden Flows

Domestic Wastes (to air, land, and water)

Domestic Hidden Flows

The Materials Flow Cycle

DMI (Direct Material Input) = Domestic Extraction + Imports

TMR (Total Material Requirement) = DMI + Domestic Hidden Flows + Foreign Hidden Flows

DPO (Domestic Processed Output) = DMI – Net Additions to Stock – Exports

TDO (Total Domestic Output) = DPO + Domestic Hidden Flows

NAS (Net Adddition to Stock) = DMI - DPO - Exports

Analyzing Material Flows

- Absolute size of flows (conventional and hidden)
- Composition of flows (dominance of energy system, hazardous materials)
- Use vs. waste
- Links to economy and population

Total Domestic Output, 1996

Composition of U.S. Total Domestic Output, 1996

Material Flows Per Person in the U.S., 1996

Carbon Dioxide as a Percentage of DPO, 1996

CO₂ Output from Fossil Fuel Combustion and Industrial Processes, 1975-1996 (Index)

A Pilot Characterization Scheme

Mode of release (M)Physical-chemical qualities (Q)Velocity (V)

the U.S., 1975-96 8,000 6,000

Outputs to Air, Land, and Water in

Potentially Hazardous Outflows to the U.S. Environment, 1975–96

Lead Outputs to the U.S. Environment, 1975–96

Arsenic Use in the U.S., 1975–96

Bromine Outputs in the U.S., 1975–1996

Medical Chemical Outputs to the U.S. Environment, 1975–96

Net Additions to Stock, and Domestic Processed Output, 1996

Net Additions of Material to Stock in the U.S., 1975–96

Stock Materials and Associated Hidden Flows in the U.S., 1975–1996

Domestic Processed Output Per Constant Unit of GDP (U.S. Dollars), 1975 and 1996

Decoupling between Material Outputs and GDP in the U.S., 1975–96

Decoupling between Material Outputs and Population in the U.S., 1975–96

Decoupling between Material Outputs and GDP, 1975-1996

Decoupling between Material Outputs and Population, 1975-1996

Domestic Processed Output, 1975-1996 (Index)

Policy Messages

- Many major flows not measured or considered in environmental policy
- Economies continue to grow in physical terms
- Many hazardous flows occur upstream and downstream of processing and manufacture
- Too many flows to regulate individually
- Decoupling is happening but it's not enough
- Essential to look at the entire material cycle in developing resource and waste policies

Possible Implications for Industry

- More emphasis on self-regulation?
- Performance targets?
- Design for environment?
- Extended producer responsibility?
- Information and disclosure requirements?
 - company reporting
 - product labeling

THE WEIGHT OF NATIONS

MATERIAL OUTFLOWS FROM INDUSTRIAL ECONOMIES

NATIONAL INSTITUTE FOR ENVIRONMENTAL STUDIES

CML CENTRE OF ENVIRONMENTAL SCIEN

WORLD RESOURCES INSTITUT

DEPARTMENT OF SOCIAL ECOLOGY,

WUPPERTAL INSTITUTE FOR CLIMATE. ENVIRONMENT AND ENERGY.